Norman Karr

EDUCATION

University of California, Berkeley Bachelors of Arts: Computer Science • GPA: 3.60, Major GPA: 3.68 • Balavant Courses: Computer Vision Natural Language Processing Machine Learning Data Ethics	Berkeley, CA 8/2018–5/2022
PROFESSIONAL EXPERIENCE	
 Berkeley Artificial Intelligence Research Undergraduate Researcher Worked 8+ hours per week with two Ph.D. students under Professor Alexei Efros' computer vision group researching generative vision models Designed and trained an unconditional diffusion model with 32+ million parameters on UCF101 Reduced necessary computation and model size by a factor of 8 by using pretrained autoencoders and performing downstream tasks in the encoded latent space 	Berkeley, CA 1/2022-Present
 Berkeley Lab Physics Division Undergraduate Researcher Worked 6+ hours per week as an independent researcher in Benjamin Nachman's lab studying the application of machine learning in particle physics Demonstrated viability of 5 novel, unsupervised, machine learning based approaches for anomaly detection on jet data from Large Hadron Collider simulations Designed mixture density networks to interpolate and generate particle jet data as a means to increase training data for downstream tasks 	Berkeley, CA 1/2021-Present
 Medtronic Software R&D Intern Developed production-level algorithms that operate on the next-generation continuous glucose monitors Refactored pre-existing programs to improve maintainability, computational efficiency and memory usage Learned a new form of development known as model-based development to manage control algorithms 	Northridge, CA Summer 2021
 EECS Department Course Staff Reader/Tutor 8+ hour Reader/Tutor for CS 170: Efficient Algorithms and Intractable Problems Hosted weekly office hours to help students with homework and answer student questions and aided in weekly discussion sections by facilitating breakout rooms and answering live chat questions Produced supplementary walk-through videos to improve student understanding of lecture topics, discussion problems, and previous exams 	Berkeley, CA 8/2020-5/2021
 Intellex Data Science Intern Learned a new coding language, Clojure, on site to contribute directly to a NLP-based classifier Engineered and deployed 2 custom feature extractors within a document classifier pipeline to improve downstream search accuracy Fine-tuned a pretrained BeRT language model to specialize its learned embeddings for legal language Developed efficient data analysis algorithms on corpuses with over 300,000 legal documents to extract relevant statistics to help fine-tune model architecture VOLUNTEERING EXPERIENCE 	Singapore Summer 2019
Academic Intern for CS 61C: Great Ideas in Computer Architecture • Volunteered 3+ hours per week as general course helper holding office hours and weekly check-ins to ensure	Fall 2020
 A students stay up-to-date with course material Academic Intern for CS 61B: Data Structures and Algorithms Volunteered 3+ hours per week, guiding students through lab assignments and providing general course help 	Fall 2019
SKILLS	
· Coding Languages Duthon D. Lava C++ Matlah Claime	

- Coding Languages: Python, R, Java, C++, Matlab, Clojure
- Software Development: Algorithms and Data Structures, Data Analysis, Version Control, Software Lifecycle
- Machine Learning: Clustering, Classification and Regression, GPU Training, SVMs, CNNs, Transformers
- Tools: PyTorch, Sci-Kit Learn, AWS EC2, OpenCV, WandB, NumPy, Pandas, Git
- Languages: English (Native), Chinese (Fluent)