
Marvel Phase 5: The Convengers Initiative

Sean Lin
seanlin2000@berkeley.edu

Norman Karr
nkarr11@berkeley.edu

1 Introduction

In this computer vision project, our primary goal was to build a robust image classifier on Tiny
ImageNet. We aimed to build and train our classifiers in such a way that they would be resistant to
various data perturbations, adversarial examples, or out-of-distribution data. The importance of this
specific task cannot be understated because setting up models to be robust is a key step in ensuring
good real-time performance as well as defending against adversarial attacks.

To tackle this problem, we opted to use a transfer learning approach where we use pretrained networks
and fine-tune the networks so that they are optimized for our task. In this report, we introduce two
new forms of transfer learning models: multi-model ensembling and multi-model feature extraction
dubbed Convengers. We evaluated each model using top-1 and top-5 accuracy metrics on two splits
of data: a clean validation set and a adversarial validation set. Thus far, we have been able to achieve
good results with Convengers with 70% top-1 accuracy, 89% top-5 accuracy, and 48% top-1 accuracy
on adversaries. Convengers performed roughly equal to our baselines for clean data but performed
noticeably better accuracy and adversarial accuracy. Regardless, the results of both models look
promising but could largely benefit from more training.

2 Literature/Related Work

2.1 Adversarial Robustness

Adversarial attacks have long been intriguing in machine learning as a way to fool seemingly good
classifiers. Goodfellow et al. (2014) (1) invented the fast gradient sign method (FGSM), which
generates adversarial methods by adding or subtracting a small ε to each pixel of the image, depending
on the sign of its gradient. This is done to intentionally alter the image to fool the model. While
seemingly simple, this type of adversarial attack proves to work very well on most models.

Madry et al. (2019) (2) devised the Projected Gradient Descent (PGD) attack, which attempts to
find the perturbation that maximizes the loss of the model on the input via constrained optimization.
Because it seeks to solve an optimization problem rather than taking iterative steps like FGSM, adver-
sarial examples generated by PGD takes significantly longer to generate. However, the adversarial
attacks that PGD generates are much stronger, as they are optimized to find the adversarial example
that maximizes loss. PGD attacks are empirically difficult to defend against.

Although adversarial attacks are difficult to defend against, there is some research on defenses.
Goodfellow et al. (2014) (1) suggested training on adversarial examples as well as clean examples to
increase model robustness. Liao et al. (2018) (3) suggested preprocessing the input, such as with
median smoothing filters or bit squeezing, to make adversarial images more "clean." Papernot et al.
(2016) (4) has even suggested using knowledge distillation as a defense against adversarial attacks,
as knowledge distillation would distill the gradients used in adversarial sample creation. Our work
focuses on adversarial training as a means to adversarial robustness.

2.2 U-Net

While not directly implemented in our project, U-Net was a key source of inspiration for our final
model. Developed by Ronneberger et al. (5), U-Net consists of a contracting path of convolutional

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



layers to capture important features in the data, and then upsamples using transpose convolutions
to get the output segmentation map. On the expanding path, U-Net concatenates the features from
the corresponding convolutional layer to the current layer’s features, which provides additional
information that improves its performance. This idea of concatenating features from a different
source was the source of inspiration for our Convenger Initiative.

3 Background

3.1 Pre-trained Models:

In both our networks, we build off three different pre-trained models: ResNet-101 (6), Inception-V3
(7), and VGG-19 with batch normalization (8). We specifically chose these three models because they
each have significantly different architectures while being trained on the same ImageNet classification
task.

Inception was chosen because it’s "inception" blocks, which apply differently sized filters, would
be able to capture features invariant on the relative size of objects in frame. VGG-19 was the first
computer vision architecture to utilize homogenous stacks of multiple convolutions interspersed with
resolution reduction. It doubled the depth of AlexNet, and provides 4096 features post-convolutional
processing, which is double that of Inception or ResNet. We hypothesized that this larger number of
features may be useful for feature extraction during transfer learning of this task. By adding skip
connections to improve gradient flow, ResNet-101 was able to achieve much larger depth than VGG,
having 101 layers rather than 19, without suffering from gradient saturation. Therefore, ResNet
features may be far more processed than VGG’s, and may be useful for our feature extraction.

We expect that combining these models will benefit overall accuracy as well as out-of-distribution
performance because we are no longer confined to a single model’s featurization or decision. How
we actually utilize the pre-trained models differs between our two architectures and will be discussed
in the methods section.

3.2 Transfer Learning Transfer learning takes a pre-trained model and optimizes it for a new task
by attaching a linear classifier to the end that is trained using one of two methods: fixed feature
extraction and fine tuning. Fixed feature extraction is when the pre-trained parameters are fixed and
only the new layers are trained, whereas fine-tuning is when all parameters are trained. These methods
can also be performed sequentially (referred to as two-phase training). Each of these methods are
commonly used, but we performed some basic tests on a simple ResNet transfer model and found
that fine-tuning outperformed two-phase training and fixed feature extraction.

4 Methods

4.1 Data Augmentation

Generally, data augmentations are necessary because they help make networks more robust to
transformations and noise. In our case, they were imperative because our images were 64x64 pixels
while the pre-trained models take 224x224 pixel images as input. To combat this, we resize all images
to a higher resolution of 256x256 pixels using bi-linear interpolation and then a random 224x224
crop is made. Originally, we wanted to upsample our images using transpose convolutions, but opted
for interpolation because this method does not require training parameters. In addition to resizing,
we include also include a random Gaussian blur to each training image with probability 0.25. By
blurring some training examples, our model can develop robustness towards blurred images, which
may appear in the test set. Lastly, we normalize the pixels across each channel based on the same
standards that pre-trained models used.

4.2 Adversarial Training

Because adversarial training is a proven defense against adversarial attacks, we decided to implement
this method of training. The two adversarial attacks we opted to defend against were FGSM and PGD.
Since both of these attacks are gradient-based, we constantly generate new adversaries by running
FGSM and PGD attacks on a clean mini-batch of training data to produce a mini-batch of adversarial
data . This process is then repeated for all iterations.

2



4.3 Baseline Models

We use individually transfer-learnt ResNet-101 and Inception-V3 models as our baseline. In the
ResNet baseline, the fully connected layer at the end is replaced with a singular fully connected
layer with an output dimension of 200. A similar adjustment was made to the Inception baseline’
however, in Inception we also made sure to ignore the built-in auxilary classifier. Both of these
baselines were trained once without adversarial training and once with adversarial training. While we
also attempted to create a VGG baseline, VGG proved incredibly difficult to train, and converged
with significantly poorer accuracy than the other two models. This is consistent with the paper on
VGG, which describes the lengthy VGG training process of training smaller versions of VGG before
training the whole model. As a result, the baseline models for the experiment were transfer-learnt
ResNet-101 and Inception-V3.

4.4 Multi-model Ensembling

Our first novel architecture is an ensemble of models of different architectures, which we dub
multi-model ensembling. The ensemble consists of 3 transfer-learnt ResNet-101 classifiers and 3
transfer-learnt Inception-V3 classifiers. We hypothesized that by ensembling two different model
architectures rather than many of the same model architecture, the ensemble may be more resistant to
adversarial examples. Even though we have seen in lecture that adversarial examples can transfer
across models, we hypothesize that their means of counteracting the adversaries post-adversarial-
training may be different. Therefore, an ensemble of two different model architectures may be more
robust against generated adversaries.

Each of the 6 basic models making up our ensemble were each trained separately. Each one was
trained using Adam for 20 epochs. For the learning rate, we began the parameters we determined
from our baselines and then used a learning rate scheduler to decrease the learning rate by a factor of
10 every 7 epochs.

4.5 Convengers Initiative

Model Architecture

Inspired by U-Net’s concatenation of features from previous layers to provide additional information
for improved performance, we came up with our own novel combination architecture: concatenating
extracted features from the three of the top performing computer vision models in industry––ResNet-
101, Inception-V3, and VGG-19––to develop a robust classifier. Dubbed the Convengers Initiative,
we connected the extracted features of these three models together with dense layers as one singular
model. For both ResNet and Inception, we flattened the output of each model’s final average pool
layer to get two 2048 dimensional vectors as our feature vectors. For VGG, we chose to extract VGG
features from the output of its first fully connected layer which had an input dimension of 25088 and
output dimension of 4096. This way we could fine-tune the 100 million parameters instead of having
to train them from scratch.

With these extractions, we have 3 resultant features vectors for ResNet, Inception, and VGG with
respective dimensions of 2048, 2048, and 4096. Using these three vectors, we then concatenate them
into one large 8192-dimensional feature vector. We then connected this vector to 3 blocks (each block
consists of a dense layers each with batch norm, ReLU, and dropout) and then one final dense layer
to produce the final logits.

Figure 1: Convengers Architecture

3



5-Phase Training

We are also introducing a novel training method for this architecture which we dub Marvel Phase 5, a
5-phase training pipeline. For each phase, we use the Adam optimizer and load data with a batch size
of 64. Additionally, all phases except for phase 1 are also trained with adversarial examples with a
10:1 ratio of FGSM adversaries to PGD adversaries.

In the first phase, we hold the parameters of the pre-trained layers constant and train only the newly
added layers. The idea is that hopefully this will help our dense layers gain insight about the features
in the pre-trained models. The next three phases are then trained where each phase fine-tunes the new
layers plus one of the pre-trained models. For example, phase 2 trains the ResNet and dense layers
while the Inception and VGG layers are frozen. Each of these phases also have different learning
rates which we determined from earlier tests with the respective baselines. If we had more time and
compute, we wanted to loop phase 2-4 so that it resembles something like a clustering algorithm.
In the final phase, we unfreeze all layers and fine-tune the model end-to-end for 15 epochs using a
learning rate scheduler starts at 1e−5 and decreases by a factor of 10 every 7 epochs.

5 Results

All relevant models that we trained with adversarial training were trained on Colab and AWS spot
instances. In the end, we were able to successfully train to completion a baseline for both ResNet and
Inception. Unfortunately, both the ensemble and Convengers were not able to train to completion.
We ran into problems with Colab saying we exceeded our limit of GPU compute or AWS terminating
our spot instances prematurely. For the ensemble, we were only able to fully train two of the six
models included in the ensemble. For Convengers, we were able to complete the first 4 phases of the
five phase train and then only a few epochs of the final end-to-end training phase. For both cases, it
was clear that we had not yet fully converged. Nevertheless, the data that we were able to is displayed
below.

Accuracy
Model Top-1 Train Top-5 Train Top-1 Val Top-5 Val Top-1 Val (w

adv.)
ResNet 64.75 83.75 77.06 85.75 47.31
Inception 64.69 82.50 71.94 89.18 46.12
Ensemble 51.20 75.76 57.21 77.19 –
Convengers 65.89 81.72 70.56 88.74 48.61

One immediately surprising observation is that the training accuracy for all models was less than the
validation accuracy. However, we deduced that this may be due to the fact that the data augmentations
performed on training data was different than validation data. As a result, we believe that the resulting
training data was a more difficult problem for the networks. Despite not being trained to completion, it
is clear that Convengers has promise as an architecture. It was able to achieve similar accuracy across
each metric and actually performed better in adversarial validation. The observation follows that of
the trade-off of optimizing for adversaries suggests that our model is actually building resistance to
attacks as it should.

6 Conclusion

We were surprised by how well Convengers performed on the data, because we hypothesized that
the model may be extremely difficult to train. VGG, Inception, and ResNet were all trained using
different hyperparameters––such as learning rate schedulers, momentum weights, etc.––so we thought
it may be difficult to train all of their backbones together in one model. We were also concerned that
Convengers may overfit. Often times, models that have too many parameters tend to overfit to the
training data, and perform poorly on the validation set. Given the potential for overfitting or training
issues, we were pleased with the results, to say the least.

4



7 Team Contributions

Both of us did an equal amount of work. In exact percentages, we split the work 50-50. We worked
together on team calls from 8pm to 12:00am every day of dead week and the days of finals week
leading to the Wednesday deadline. We also worked individually for roughly an hour every day prior
to meeting up to work as a group. Below we have detailed our individual contributions to the project:

Sean Lin: Researched how to implement transfer learning and tested whether it would be more
effective to use fine-tuning or feature extraction for this project. Set up our AWS instances and data
pipeline, which involved curling the dataset into the proper directory and writing a preprocessing
utils file to properly preprocess the validation set to remain consistent with the training set. Wrote
the linear classifier that we attach to the back of pre-trained models for transfer learning, and
wrote the naive version of our model trainer. Fine-tuned our ResNet models and tuned the ResNet
hyperparameters, including batch size, learning rate, and learning rate scheduler. Developed the
multi-model model ensembling method, which includes a ensemble of ResNet-101 and InceptionV3
models. Researched adversarial examples, plotted a small batch of examples to test our baseline
model with, and implemented adversarial training.

Norman Karr: Wrote a set of utils functions to correlate image class number with the actual name
of the image class. Analyzed the existing architecture of each of the three pretrained models in
pytorch for implementing the transfer learning models and developed the code for each model as
well. In addition to developing the models, Norman also built a class for training and other important
functionality such as saving models and model logs. In terms of model testing, Norman mainly tested
Inception-V3 and VGG-19 transfer models. The Convenger initiative was primarily completed by
Norman as he implemented the concatenated model, came up with the five phase training method,
and trained the model.

8 Appendix

Figure 2: Five Phase Training

5



References
[1] G. et al., “Explaining and harnessing adversarial examples.”

https://arxiv.org/pdf/1412.6572.pdf, March 2015.

[2] M. et al., “Towards deep learning models resistant to adversarial attacks.”
https://arxiv.org/pdf/1706.06083.pdf, September 2019.

[3] L. et al., “Defense against adversarial attacks usinghigh-level representation guided denoiser.”
https://openaccess.thecvf.com/content_cvpr_2018/papers/Liao_Defense_
Against_Adversarial_CVPR_2018_paper.pdf, 2018.

[4] P. et al., “Distillation as a defense to adversarialperturbations against deep neural networks.”
https://arxiv.org/pdf/1511.04508.pdf, 2016.

[5] R. et al., “U-net: Convolutional networks for biomedicalimage segmentation.”
https://arxiv.org/pdf/1505.04597.pdf, 2015.

[6] H. et al., “Deep residual learning for image recognition.”
https://arxiv.org/pdf/1512.03385.pdf, December 2015.

[7] S. et al., “Rethinking the inception architecture for computer vision.”
https://arxiv.org/pdf/1512.00567.pdf, December 2015.

[8] S. et al., “Very deep convolutional networks for large-scale image recognition.”
https://arxiv.org/pdf/1409.1556.pdf, April 2015.

6

https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/pdf/1706.06083.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Liao_Defense_Against_Adversarial_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Liao_Defense_Against_Adversarial_CVPR_2018_paper.pdf
https://arxiv.org/pdf/1511.04508.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.00567.pdf
https://arxiv.org/pdf/1409.1556.pdf

	Introduction
	Literature/Related Work
	Background
	Methods
	Results
	Conclusion
	Team Contributions
	Appendix

